
tion and speech recognition. A masking field does this by giving
the chunks that represent larger groupings, up to some maximal
length, a prewired competitive advantage over those that repre-
sent smaller groupings. It was shown how this bias could develop
from simple developmental growth laws (Cohen & Grossberg
1986). The network clarifies how the most predictive chunk can
be maximally activated, while less predictive chunks are less acti-
vated, and chunks with insufficient evidence are merely primed.
Such a network naturally explains such data as the Magic Number
Seven (Grossberg 1978a; 1986; Miller 1956), and predicted data
about the word length effect (Samuel et al. 1982; 1983), which
shows that a letter can be progressively better recognized when it
is embedded in longer words of lengths from 1 to 4. This is the
speech analog of the word superiority effect, which it also explains,
unlike the Seidenberg and McClelland (1989) model. Masking
fields have recently been used, within an ART framework, to
quantitatively explain data about how future word sounds can re-
organize conscious percepts of earlier word sounds (Grossberg &
Myers 1999; Repp et al. 1978). None of the distributed models
mentioned by Page can explain these data. More recent develop-
ments of ART continue to analyse how a network can automati-
cally discover, through incremental learning in real time, the op-
timal level of compression with which to represent different input
environments.

Page mentions “binding” as one means of generating distrib-
uted representations. One mechanism for this is the horizontal
connections that exist in neocortex, notably in layers 2/3. Recent
modeling work has clarified how bottom-up, horizontal, and top-
down interactions interact within the laminar circuits of neocor-
tex, notably visual cortex, to bind together distributed activations
into coherent boundary representations (Grossberg 1999; Gross-
berg & Raizada 1999). This work opens the way toward the very
large task of showing how distributed information may be coher-
ently bound in other parts of sensory and cognitive neocortex.

Page notes that both view-specific and view-invariant repre-
sentations of familiar objects can be found in IT cortex. Such rep-
resentations have been shown to self-organize in a number of
ART-based models; see Bradski and Grossberg (1995) for one
such model and related references. A key issue here is that work-
ing memories play a useful role in generating these representa-
tions. These working memories are “distributed,” yet are also
clearly localist.

Page quotes the assertion of McClelland and Rumelhart (1981)
and Rumelhart and McClelland (1982) that their Interactive Ac-
tivation (IA) model is a canonical model “that characterizes the
qualitative behavior of other models.” Actually, the original IA
model had serious defects. These defects illustrate that all localist
models are not created equal, and that one must exercise as much
caution in choosing among them as one does between localist and
nonlocal distributed models. In particular, I early noted that the
IA model had unrealistic processing levels (phonemes, letters,
words) and bottom-up input pathways (both excitatory and in-
hibitory). These properties were inconsistent with key data, and
prevented the model from being able to stably learn from its in-
puts-even though the authors did not attempt to make the IA
model learn (Grossberg 1984; 1987). Later versions of the model
changed these properties to be consistent with previously pub-
lished ART properties; e.g., those in Grossberg (1978a). In this
sense, the IA model is dead, and has been subsumed by ART.
Problems within models like IA can lead people who prefer non-
local distributed models to conclude that their models are better.
A more proper conclusion is that IA was not an adequate model,
localist or not.

Page provides a useful critique of the McClelland et al. (1995)
attempt to explain how interactions between the hippocampus
and neocortex may control learning and memory. He leaves out at
least one issue that I find devastating to all models of this type.
Grossberg and Merrill (1996) provide a critique which builds
upon this concern. It involves the issue of representation, which
is key to all discussions of localist versus distributed coding. In par-

ticular, this model proposes that the hippocampus rapidly encodes
information which is then later transferred to neocortex. But there
is no evidence of which I am aware that the hippocampus can rep-
resent the types of information from vision, audition, and so on,
that would need to be represented there for this proposal to be
plausible. Saying that the information is represented by hip-
pocampus in compressed form does not help, because then one
needs to explain how it gets decompressed in the cortex. I am
amazed that authors of such models have not bothered to respond
to this critique. I hope that it does not take as long as it took the
stability-plasticity issues to get discussed which were introduced
with ART in 1976.

The Law of Practice and localist 
neural network models

Andrew Heathcote and Scott Brown
Department of Psychology, The University of Newcastle, Callaghan, 2308,
NSW, Australia. {heathcote; sbrown}@psychology.newcastle.edu.au
psychology.newcastle.edu.au/

Abstract: An extensive survey by Heathcote et al. (in press) found that the
Law of Practice is closer to an exponential than a power form. We show
that this result is hard to obtain for models using leaky competitive units
when practice affects only the input, but that it can be accommodated
when practice affects shunting self-excitation.

In a recent survey, Heathcote et al. (in press) analyzed the form of
the Law of Practice in 7,910 practice series from 475 subjects in
24 experiments using a broad range of skill acquisition paradigms.
When the practice series were not averaged over subjects or con-
ditions, an exponential function (mean response time, RT 5 A 1
Be2aN, where A is asymptotic RT, B is the amount that learning
decreases RT, and N is practice trials) provided a better fit than a
power function (RT 5 A 1 BN2b) for the majority of cases in
every paradigm. The defining property of an exponential function
is that its relative learning rate, RLR 5 2dRT/dN/(RT 2 A) equals
a constant (a). In contrast, the power function’s RLR decreases hy-
perbolically to zero, RLR 5 b/N. Previous findings in favor of a
power function (e.g., Newell & Rosenbloom 1981) used practice
series averaged over subjects and/or conditions. When exponen-
tial practice series with different rates (a) are averaged, the RLR
of the average decreases, because fast learners (with large a) con-
trol the rate of change early in practice, while slow learners (with
small a) dominate later in practice (see Brown & Heathcote, in
preparation, for detailed analyses of averaging effects). As theo-
ries of skill acquisition model the behavior of individuals, not av-
erages, Heathcote et al. concluded that the “Law of Practice” is
better characterized by an exponential than a power function.
Hence, the power function prediction made by Page’s model does
not accord with recent empirical results.

We believe that an exponential law of practice is extremely dif-
ficult to obtain using Page’s approach to practice effects in com-
petitive leaky integration networks (Equation 5). To see why, con-
sider the time (t) it takes the activation (x(t)) of a leaky integrator
(dx/dt 5 I 2 kx, where I is input and k is leakage rate and x(0) 5
0) to reach a criterion x.

The RLR of (1) with respect to I decreases to zero. If we assume,
as Page does, that practice decreases t by increasing I, the RLR of
(Eq. 1.) with respect to N will decrease to zero unless I(N) $
O(N2) for large N. Such a faster than linear increase in input is dif-
ficult to justify. The increase of I with N is slower than linear for
Page’s “noisy-pick-the-biggest” model. Even if all instances, rather
than just the maximally activated instance, were to contribute to
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I, the increase would be only linear. Page’s simulation results (Fig.
6) indicate that the same power-like effects of increasing I apply
to the time it takes competing leaky integrators to pass an activa-
tion criterion.

However, competitive leaky integrators can account for Heath-
cote et al.’s (in press) findings if practice alters shunting terms,
such as the weights of self-excitatory connections.1 Consider a
two-unit system of the type discussed by Usher and McClelland
(1995), with normalized inputs I and (1 2 I) and linear threshold
transfer functions:

dx1/dt 5 I 2 (k 2 e)x1 2 dx2 (2)

dx2/dt 5 1 2 I 2 (k 2 e)x2 2 dx1 (3)

A response is made when the activation of one unit exceeds a cri-
terion, x. Assume that as practice proceeds, the self-excitatory
weight, e, approaches the leakage rate k, using a weight-learning
rule like Page’s Equation 2:

de/dN 5 l(k 2 e) (4)

In simulations with Gaussian noise added (Eq. 2, 3) at each step
of the integration (Page’s N1 term in his Eq. 5) and larger values
of I so errors did not occur, learning series were consistently bet-
ter fit by an exponential than by a power function. Insight into this
result can be gained from the analytic result for the one unit case
(i.e., Eq. 2 with competitive weight, d 5 0, which was also better
fit by the exponential in simulations):

For a linear Taylor approximation to (Eq. 5), RLR decreases mar-
ginally with N, but asymptotically approaches l rather than zero.
Heathcote et al. (in press) found that an APEX function (RT 5 A
1 Be2aNN2b), which has a RLR that decreases to an asymptote
greater than zero, consistently fit slightly better than an exponen-
tial function. We found the same pattern of fit to our simulation
results for both the one and two-unit models. The parameter es-
timates for these fits also concurred with the survey results. Esti-
mates of the power function A parameter were implausibly small
(as N increases t approaches x/I for the linear Taylor approxima-
tion to [Eq. 5], whereas most power function A estimates were
zero). Fits of a power function with an extra parameter (E) to ac-
count for prior practice (RT 5 A 1 B(N 1 E)2b) produced im-
plausibly large B estimates, mirroring Heathcote et al.’s (in press)
findings with the survey data.

Given limited space it is not possible to quantitatively examine
this type of model further (see Heathcote 1998, for related find-
ings and Heathcote & Brown, in preparation, for a detailed analy-
sis). However, the findings presented are sufficient to demon-
strate that Heathcote et al.’s (in press) results are not incompatible
with the overall localist neural network approach. Indeed, learn-
ing in shunting connections, both self-excitatory and competitive,
provides an adaptive mechanism for consolidating and differ-
entiating local response representations (cf. Usher & McClelland
1995, who note that the “units” in such models may correspond to
collections of neurons bound together by mutually excitatory con-
nections). Reduced leakage with practice can also explain
Jamieson and Petrusik’s (1977) finding (cited in Usher & McClel-
land 1995) that the difference between error and correct RTs de-
creased with practice. As leakage approaches zero, a leaky inte-
grator approximates a classical diffusion process, for which error
and correct RTs are equivalent.

NOTE
1. We also obtained an exact exponential result for inputs that (1) in-

crease with practice according to a learning rule like Page’s Equation 2 (I
5 M(1 2 e2lN)), (2) are nonstationary (decreasing with presentation time
t, as I 5 1/(t 1 (b 2 cI)), b/c . M), and (3) have a shunting effect on a

single unit’s activation (dx/dt 5 (U 2 x)I). We will not pursue this model
here, as it is very different from Page’s approach (see Heath 1992, and
Smith 1995, for more on nonstationary inputs, and Heathcote 1998 for
more on shunting inputs).

Localism as a first step toward symbolic
representation

John E. Hummel
Department of Psychology, University of California, Los Angeles, CA 90095.
jhummel@lifesci.ucla.edu www.bol.ucla.edu/~hummel/

Abstract: Page argues convincingly for several important properties of lo-
calist representations in connectionist models of cognition. I argue that
another important property of localist representations is that they serve as
the starting point for connectionist representations of symbolic (relational)
structures because they express meaningful properties independent of one
another and their relations.

Page’s arguments and demonstrations make a compelling case for
the essential role of localist representations in connectionist mod-
els of cognition (and cognition itself ). One important property of
localist representations that Page does not emphasize (although
he mentions it at the end of sect. 7.3), concerns the role of local-
ist nodes in the representation of relational structures. I argue that
localist representations share a crucial property with the kinds of
representations that are necessary for relational representation in
connectionist systems – namely, independent representation of
meaningful entities – and that they therefore play an essential role
in the ability of connectionist models to account for symbolic as-
pects of cognition.

The notion of a “localist representation” is subtle because local-
ism is not a property of a representation, but of the relationship be-
tween a representation and the entities it represents. To borrow
Page’s example, the activation pattern 2woman, 1politician, and
2actor is a distributed representation of Tony Blair, but a local rep-
resentation of woman, politician, and actor. Every representation is
local at some level. Even a “fully distributed” representation is lo-
calist with respect to some entities, in that each node has an equiv-
alence class of entities to which it corresponds. The equivalence
class may be difficult or impossible for the modeler to understand
(as in the case of the hidden nodes in many BP networks), but un-
less a node is always active (in which case it carries no information),
its activity will correspond to some state of affairs in the network’s
universe: The node is a localist representation of that state of affairs.
As such, the important question is not whether a representation is
localist or distributed, but whether it is localist with respect to a
meaningful state of affairs in the network’s universe.

In this sense, the question of localist versus distributed maps
onto the question of independence (a.k.a., separability; Garner
1974) versus nonindependence (a.k.a., integrality) in mental rep-
resentation. If meaningful concepts, entities or dimensions map
onto individual nodes (or in the case of dimensions, nonoverlap-
ping populations of nodes) – that is, if the system is localist with
respect to those entities or dimensions – then the system repre-
sents those entities as independent of one another. To the system,
the entities or dimensions are separable (cf. Cheng & Pachella
1984). If individual nodes respond to conjunctions of entities or
properties, then the resulting representation is integral with re-
spect to those properties (e.g., nodes that respond to specific con-
junctions of shape and color constitute an integral representation
of shape and color). One hidden limitation of many “fully distrib-
uted” representations (e.g., those that emerge in the hidden lay-
ers of BP networks) is not only that they lack individual nodes to
respond to individual entities (the limitation Page emphasizes),
but also that they typically constitute integral, rather than separa-
ble representations of the important entities or properties in the
network’s universe.
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